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S1 Methods

The networks used to simulate baboon behavior were trained with the simplest possible
error-driven learning rule known from the animal learning literature, proposed in 1972
by Rescorla and Wagner [1]. We constructed, for each baboon separately, a network with
word and nonword output nodes, and with as input units, discrete gradient orientation
features derived from a simplified version of the histogram of oriented gradients (hog)
feature descriptor first proposed by [3]. The choice for hog-based features as input is
motivated by studies indicating that vision primitives encode contrast and
orientation [4–7]. Hog features are descriptors of low-level features of an image with
respect to gradient magnitude, gradient orientation, and spatial location. The algorithm
computes magnitude of gradient orientation in densely distributed locations of an image.
For this, we divided stimulus images in a grid containing non-overlapping cells of fixed
size. We used a grid of 10 by 4 such cells for the four-letter words presented to the
baboons. For each cell, we extracted the gradient magnitude at each pixel contributing
a weighted vote to 9 gradient orientation bins of 20 degrees each. Each pixel also adds a
weighted contribution to the four neighbouring orientation bins and the respective bins
of four neighbouring cells. The resulting histograms values were normalized (with the
regularized L2-norm) across cells, yielding for each stimulus image a gradient-based
vector with 40 × 9 = 360 values in [0, 1]. To capture locality and orientation, we add to
each value a head argument encoding the feature descriptor index, representing the cell
position and gradient bin. The 8139 distinct word and nonword stimuli of the baboon
study generated a total of 14,476 unique local gradient orientation (lgo) features.

For each baboon, a separate network was trained on the sequence of stimuli in
exactly the order presented to that baboon in the experiment. Weights were updated
with the Rescorla-Wagner learning rule. This rule specifies the change ∆wij in the
weight on the connection from lgo input node hi to lexicality output node oj , j = 1, 2,
taking into account all lgo features hm in the set H of lgo features present in the
input, as follows:

∆wij =

{
0.001 · (I[oj is reinforced] −

∑
m∈H wmj) if hi ∈ H

0 otherwise
(1)
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The learning rate, the only free parameter of the model, was held constant at 0.001
across baboons, following previous results indicating this learning rate to be optimal for
the modeling of human lexical decision [2].

At each trial, the Rescorla-Wagner learning rule was applied twice. The first update
of the weights was driven by the baboon’s own response. A word response led to
reinforcement of the weights to the word output node and weakening of the weights to
the nonword output node, whereas a nonword decision led to reinforcement of the
weights to the nonword node and a downward adjustment of the weights to the word
node. Whereas in a typical lexical decision task human subjects are not provided with
feedback on the accuracy of their decisions, the baboons did receive such feedback.
Food was dispensed for correct responses, and a screen flash without food indicated the
response was incorrect. The consequences of this feedback were modeled by applying
the Rescorla-Wagner learning rule a second time, but now with lexicality (word versus
nonword) driving the updating of the weights. Correct responses led to strengthening of
the weights to the word c.q. nonword nodes, whereas incorrect responses led to
downward adjustments.

For each trial t, prior to the updating of the weights, we calculated the bottom-up
support provided by the lgo features in the input for the word and nonword responses.
Bottom-up support was estimated by summation of the weights (w(t)) at t on the
connections from the lgo features in the input to the word and nonword output nodes
oword and ononword. This resulted in two activations,

a(word, t) =
∑
m∈H

w(t)
moword

for the word and
a(nonword, t) =

∑
m∈H

w(t)
mononword

for the nonword response. A word response was generated at trial t when
a(word, t) > a(nonword, t), and a nonword response otherwise.

In the early phase of the experiment, baboons had a strong bias for either nonword
responses (baboons DAN, DOR, VIO and to some extent ARI) or for word responses
(baboons ART, CAU), see Fig 2 bottom panel. Therefore, the correlational analyses in
Figs 1 and 2 excluded the first 5000 trials from consideration. For baboon ART, this
cut-off point is too early (upper panel Fig 2, lower panel), resulting in outliers violating
normality and giving rise to artefactual negative crosscorrelations (bottom panel Fig 1).

References

1. Rescorla RA, Wagner AR. A theory of Pavlovian conditioning: Variations in the
effectiveness of reinforcement and nonreinforcement. In: Black AH, Prokasy WF,
editors. Classical conditioning II: Current research and theory. New York:
Appleton Century Crofts; 1972. p. 64–99.

2. Bitschnau S. An exploration of computational learning algorithms: A closer look
at the Rescorla-Wagner model and the Danks equilibrium equation in language
processing; 2015. BA thesis Cognitive Science, University of Tübingen.
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